Quantitative and Empirical Analysis of Energy Markets

Can Interest Rate Volatility Be Extracted from the Cross Section of Bond Yields? an Investigation of Unspanned Stochastic Volatility

Financial risk has become a focus of financial and nonfinancial firms, individuals, and policy makers. But the study of risk remains a relatively new discipline in finance and continues to be refined. The financial market crisis that began in 2007 has highlighted the challenges of managing financial risk. Now, in Financial Risk Management, author Allan Malz addresses the essential issues surrounding this discipline, sharing his extensive career experiences as a risk researcher, risk manager, and central banker. The book includes standard risk measurement models as well as alternative models that address options, structured credit risks, and the real-world complexities or risk modeling, and provides the institutional and historical background on financial innovation, liquidity, leverage, and financial crises that is crucial to practitioners and students of finance for
understanding the world today. Financial Risk Management is equally suitable for firm risk managers, economists, and policy makers seeking grounding in the subject. This timely guide skillfully surveys the landscape of financial risk and the financial developments of recent decades that culminated in the crisis. The book provides a comprehensive overview of the different types of financial risk we face, as well as the techniques used to measure and manage them. Topics covered include: Market risk, from Value-at-Risk (VaR) to risk models for options Credit risk, from portfolio credit risk to structured credit products Model risk and validation Risk capital and stress testing Liquidity risk, leverage, systemic risk, and the forms they take Financial crises, historical and current, their causes and characteristics Financial regulation and its evolution in the wake of the global crisis And much more Combining the more model-oriented approach of risk management—as it has evolved over the past two decades—with an economist’s approach to the same issues, Financial Risk Management is the essential guide to the subject for today’s complex world.

Readers of this book will learn how to solve a wide range of optimal investment problems arising in finance and economics. Starting from the fundamental Merton problem, many variants are presented and solved, often using numerical techniques that the book also covers. The final chapter assesses the relevance of many of the models in common use when applied to data.

Analysis of Financial Time Series

Autoregressive Conditional Heteroskedastic (ARCH) processes are used in finance to model asset price volatility over time. This book introduces both the theory and applications of ARCH models and provides the basic theoretical and empirical background, before proceeding to more advanced issues and applications. The Authors provide coverage of the recent developments in ARCH modelling which can be implemented using econometric software, model construction, fitting and forecasting and model evaluation and selection. Key Features: Presents a comprehensive overview of both the theory and the practical applications of ARCH, an increasingly popular financial modelling technique. Assumes no prior knowledge of ARCH models; the basics such as model construction are introduced, before proceeding to more complex applications such as value-at-risk, option pricing and model evaluation. Uses empirical examples to demonstrate how the recent developments in ARCH can be implemented. Provides step-by-step instructive examples, using econometric software, such as Econometric Views and the G@RCH module for the Ox software package, used in Estimating and Forecasting ARCH Models. Accompanied by a CD-ROM containing links to the software as well as the datasets used in the examples. Aimed at readers wishing to gain an aptitude in the applications of financial econometric modelling with a focus on practical implementation, via applications to real data and via examples worked with econometrics packages.

Time Series and Panel Data Econometrics

We propose a canonical representation for affine term structure models where the state vector is comprised of the first few Taylor-series components of the yield curve and their quadratic (co-)variations. With this representation: (i) the state variables have simple physical interpretations such as level, slope and curvature, (ii) their dynamics remain affine and tractable, (iii) the model is by construction 'maximal' (i.e., it is the most general model that is econometrically identifiable), and (iv) model-insensitive estimates of the state vector process implied from the term structure are readily available. (Furthermore, this representation may be useful for identifying the state variables in a squared-Gaussian framework
where typically there is no one-to-one mapping between observable yields and latent state variables). We find that the 'unrestricted' A1(3) model of Dai and Singleton (2000) estimated by 'inverting' the yield curve for the state variables generates volatility estimates that are negatively correlated with the time series of volatility estimated using a standard GARCH approach. This occurs because the 'unrestricted' A1(3) model imposes the restriction that the volatility state variable is simultaneously a linear combination of yields (i.e., it impacts the cross-section of yields), and the quadratic variation of the spot rate process (i.e., it impacts the time-series of yields). We then investigate the A1(3) model which exhibits 'unspanned stochastic volatility' (USV). This model predicts that the cross section of bond prices is independent of the volatility state variable, and hence breaks the tension between the time-series and cross-sectional features of the term structure inherent in the unrestricted model. We find that explicitly imposing the USV constraint on affine models significantly improves the volatility estimates, while maintaining a good fit cross-sectionally.

Can Interest Rate Volatility be Extracted from the Cross Section of Bond Yields? an Investigation of Unspanned Stochastic Volatility

This impressive Handbook presents the quantitative techniques that are commonly employed in empirical finance research together with real-world, state-of-the-art research examples. Written by international experts in their field, the unique approach describes a question or issue in finance and then demonstrates the methodologies that may be used to solve it. All of the techniques described are used to address real problems rather than being presented for their own sake, and the areas of application have been carefully selected so that a broad range of methodological approaches can be covered. The Handbook is aimed primarily at doctoral researchers and academics who are engaged in conducting original empirical research in finance. In addition, the book will be useful to researchers in the financial markets and also advanced Masters-level students who are writing dissertations.

Modeling and Pricing in Financial Markets for Weather Derivatives

We address three key aspects of optimal portfolio construction: expected return, variance-covariance modeling and optimization in presence of cardinality constraints. On expected return modeling, we extend the self-excited point process framework to model conditional arrival intensities of bid and ask side market orders of listed stocks. The cross-excitation of market orders is modeled explicitly such that the ask side market order size and bid side probability weighted order book cumulative volume can affect the ask side order intensity, and vice versa. Different variations of the framework are estimated by using method of maximum likelihood estimation, based on a recursive application of the log-likelihood functions derived in this thesis. Results indicate that the self-excited point process framework is able to capture a significant amount of the underlying trading dynamics of market orders, both in-sample and out-of-sample. A new framework is introduced, Realized GARCH, for the joint modeling of returns and realized measures of volatility. A key feature is a measurement equation that relates the realized measure to the conditional variance of returns. The measurement equation facilitates a simple modeling of the dependence between returns and future volatility. Realized GARCH models with a linear or log-linear specification have many attractive features. They are parsimonious, simple to estimate, and imply an ARMA structure for the conditional variance and the realized measure. An empirical application with DJIA stocks and an exchange traded index fund shows that a simple Realized GARCH structure leads to substantial improvements in the empirical fit over standard GARCH models. Finally we describe a novel algorithm to obtain the solution of the optimal portfolio problem with NP-hard cardinality constraints. The algorithm is based on a local relaxation that exploits the
inherent structure of the objective function. It solves a sequence of small, local, quadratic-programs by first projecting asset returns onto a reduced metric space, followed by clustering in this space to identify sub-groups of assets that best accentuate a suitable measure of similarity amongst different assets. The algorithm can either be cold started using the centroids of initial clusters or be warm started based on the output of a previous result. Empirical result, using baskets of up to 3,000 stocks and with different cardinality constraints, indicates that the algorithm is able to achieve significant performance gain over a sophisticated branch-and-cut method. One key application of this local relaxation algorithm is in dealing with large scale cardinality constrained portfolio optimization under tight time constraint, such as for the purpose of index tracking or index arbitrage at high frequency.

Stochastic volatility and the pricing of financial derivatives

The multi-volume set LNAI 12975 until 12979 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2021, which was held during September 13-17, 2021. The conference was originally planned to take place in Bilbao, Spain, but changed to an online event due to the COVID-19 pandemic. The 210 full papers presented in these proceedings were carefully reviewed and selected from a total of 869 submissions. The volumes are organized in topical sections as follows: Research Track: Part I: Online learning; reinforcement learning; time series, streams, and sequence models; transfer and multi-task learning; semi-supervised and few-shot learning; learning algorithms and applications. Part II: Generative models; algorithms and learning theory; graphs and networks; interpretation, explainability, transparency, safety. Part III: Generative models; search and optimization; supervised learning; text mining and natural language processing; image processing, computer vision and visual analytics. Applied Data Science Track: Part IV: Anomaly detection and malware; spatio-temporal data; e-commerce and finance; healthcare and medical applications (including Covid); mobility and transportation. Part V: Automating machine learning, optimization, and feature engineering; machine learning based simulations and knowledge discovery; recommender systems and behavior modeling; natural language processing; remote sensing, image and video processing; social media.

Debt, Risk and Liquidity in Futures Markets

This book briefly covers internationally contributed chapters with artificial intelligence and applied mathematics-oriented background-details. Nowadays, the world is under attack of intelligent systems covering all fields to make them practical and meaningful for humans. In this sense, this edited book provides the most recent research on use of engineering capabilities for developing intelligent systems. The chapters are a collection from the works presented at the 2nd International Conference on Artificial Intelligence and Applied Mathematics in Engineering held within 09-10-11 October 2020 at the Antalya, Manavgat (Turkey). The target audience of the book covers scientists, experts, M.Sc. and Ph.D. students, post-docs, and anyone interested in intelligent systems and their usage in different problem domains. The book is suitable to be used as a reference work in the courses associated with artificial intelligence and applied mathematics.

Identification and Estimation of 'Maximal' Affine Term Structure Models

Most affine models of the term structure with stochastic volatility (SV) predict that the variance of the short rate is simultaneously a linear combination of yields and the quadratic variation of the spot rate. However, we find empirically that the
A1(3) SV model generates a time series for the variance state variable that is strongly negatively correlated with a GARCH estimate of the quadratic variation of the spot rate process. We then investigate affine models that exhibit unspanned stochastic volatility (USV). Of the models tested, only the A1(4) USV model is found to generate both realistic volatility estimates and a good cross-sectional fit. Our findings suggest that interest rate volatility cannot be extracted from the cross-section of bond prices. Separately, we propose an alternative to the canonical representation of affine models introduced by Dai and Singleton (2001). This representation has several advantages, including: (I) the state variables have simple physical interpretations such as level, slope and curvature, (ii) their dynamics remain affine and tractable, (iii) the model is econometrically identifiable, (iv) model-insensitive estimates of the state vector process implied from the term structure are readily available, and (v) it isolates those parameters which are not identifiable from bond prices alone if the model is specified to exhibit USV.

Financial Mathematics, Volatility and Covariance Modelling

Any financial asset that is openly traded has a market price. Except for extreme market conditions, market price may be more or less than a “fair” value. Fair value is likely to be some complicated function of the current intrinsic value of tangible or intangible assets underlying the claim and our assessment of the characteristics of the underlying assets with respect to the expected rate of growth, future dividends, volatility, and other relevant market factors. Some of these factors that affect the price can be measured at the time of a transaction with reasonably high accuracy. Most factors, however, relate to expectations about the future and to subjective issues, such as current management, corporate policies and market environment, that could affect the future financial performance of the underlying assets. Models are thus needed to describe the stochastic factors and environment, and their implementations inevitably require computational finance tools.

Emerging Applications of Differential Equations and Game Theory

This book provides an up-to-date series of advanced chapters on applied financial econometric techniques pertaining the various fields of commodities finance, mathematics & stochastics, international macroeconomics and financial econometrics. Financial Mathematics, Volatility and Covariance Modelling: Volume 2 provides a key repository on the current state of knowledge, the latest debates and recent literature on financial mathematics, volatility and covariance modelling. The first section is devoted to mathematical finance, stochastic modelling and control optimization. Chapters explore the recent financial crisis, the increase of uncertainty and volatility, and propose an alternative approach to deal with these issues. The second section covers financial volatility and covariance modelling and explores proposals for dealing with recent developments in financial econometrics. This book will be useful to students and researchers in applied econometrics, academics and students seeking convenient access to an unfamiliar area. It will also be of great interest established researchers seeking a single repository on the current state of knowledge, current debates and relevant literature.

Handbook of Volatility Models and Their Applications

This handbook presents emerging research exploring the theoretical and practical aspects of econometric techniques for the financial sector and their applications in economics. By doing so, it offers invaluable tools for predicting and weighing the risks of multiple investments by incorporating data analysis. Throughout the book the authors address a broad range of topics.
such as predictive analysis, monetary policy, economic growth, systemic risk and investment behavior. This book is a must-read for researchers, scholars and practitioners in the field of economics who are interested in a better understanding of current research on the application of econometric methods to financial sector data.

Selected Proceedings of the Symposium on Estimating Functions

Weather derivatives provide a tool for weather risk management, and the markets for these exotic financial products are gradually emerging in size and importance. This unique monograph presents a unified approach to the modeling and analysis of such weather derivatives, including financial contracts on temperature, wind and rain. Based on a deep statistical analysis of weather factors, sophisticated stochastic processes are introduced modeling the time and space dynamics. Applying ideas from the modern theory of mathematical finance, weather derivatives are priced, and questions of hedging analyzed. The treatise contains an in-depth analysis of typical weather contracts traded at the Chicago Mercantile Exchange (CME), including so-called CDD and HDD futures. The statistical analysis of weather variables is based on a large data set from Lithuania. The monograph includes the research done by the authors over the last decade on weather markets. Their work has gained considerable attention, and has been applied in many contexts.

Time-Series Forecasting

A comprehensive and integrated approach to economic forecasting problems Economic forecasting involves choosing simple yet robust models to best approximate highly complex and evolving data-generating processes. This poses unique challenges for researchers in a host of practical forecasting situations, from forecasting budget deficits and assessing financial risk to predicting inflation and stock market returns. Economic Forecasting presents a comprehensive, unified approach to assessing the costs and benefits of different methods currently available to forecasters. This text approaches forecasting problems from the perspective of decision theory and estimation, and demonstrates the profound implications of this approach for how we understand variable selection, estimation, and combination methods for forecasting models, and how we evaluate the resulting forecasts. Both Bayesian and non-Bayesian methods are covered in depth, as are a range of cutting-edge techniques for producing point, interval, and density forecasts. The book features detailed presentations and empirical examples of a range of forecasting methods and shows how to generate forecasts in the presence of large-dimensional sets of predictor variables. The authors pay special attention to how estimation error, model uncertainty, and model instability affect forecasting performance. Presents a comprehensive and integrated approach to assessing the strengths and weaknesses of different forecasting methods Approaches forecasting from a decision theoretic and estimation perspective Covers Bayesian modeling, including methods for generating density forecasts Discusses model selection methods as well as forecast combinations Covers a large range of nonlinear prediction models, including regime switching models, threshold autoregressions, and models with time-varying volatility Features numerous empirical examples Examines the latest advances in forecast evaluation Essential for practitioners and students alike.

Statistical and Algorithm Aspects of Optimal Portfolios

The Handbook of Financial Time Series gives an up-to-date overview of the field and covers all relevant topics both from a statistical and an econometrical point of view. There are many fine contributions, and a preamble by Nobel Prize winner Robert F. Engle.
Financial, Macro and Micro Econometrics Using R

Issues in Finance, Business, and Economics Research: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Finance, Business, and Economics Research. The editors have built Issues in Finance, Business, and Economics Research: 2011 Edition on the vast information databases of ScholarlyNews™. You can expect the information about Finance, Business, and Economics Research in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Finance, Business, and Economics Research: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Prediction and Causality in Econometrics and Related Topics

Provides statistical tools and techniques needed to understand today's financial markets. The Second Edition of this critically acclaimed text provides a comprehensive and systematic introduction to financial econometric models and their applications in modeling and predicting financial time series data. This latest edition continues to emphasize empirical financial data and focuses on real-world examples. Following this approach, readers will master key aspects of financial time series, including volatility modeling, neural network applications, market microstructure and high-frequency financial data, continuous-time models and Ito's Lemma, Value at Risk, multiple returns analysis, financial factor models, and econometric modeling via computation-intensive methods. The author begins with the basic characteristics of financial time series data, setting the foundation for the three main topics: Analysis and application of univariate financial time series, Return series of multiple assets, Bayesian inference in finance. Methods have been thoroughly revised and updated, including the addition of S-Plus® commands and illustrations. Exercises have been thoroughly updated and expanded and include the most current data, providing readers with more opportunities to put the models and methods into practice. Among the new material added to the text, readers will find: Consistent covariance estimation under heteroscedasticity and serial correlation, Alternative approaches to volatility modeling, Financial factor models, State-space models, Kalman filtering, Estimation of stochastic diffusion models. The tools provided in this text aid readers in developing a deeper understanding of financial markets through firsthand experience in working with financial data. This is an ideal textbook for MBA students as well as a reference for researchers and professionals in business and finance.

Economic Forecasting

Empirical Asset Pricing

Branches of mathematics and advanced mathematical algorithms can help solve daily problems throughout various fields of applied sciences. Domains like economics, mechanical engineering, and multi-person decision making benefit from the inclusion of mathematics to maximize utility and cooperation across disciplines. There is a need for studies seeking to understand the theories and practice of using differential mathematics to increase efficiency and order in the modern world. Emerging Applications of Differential Equations and Game Theory is a collection of innovative research that examines the recent
advancements on interdisciplinary areas of applied mathematics. While highlighting topics such as artificial neuron networks, stochastic optimization, and dynamical systems, this publication is ideally designed for engineers, cryptologists, economists, computer scientists, business managers, mathematicians, mechanics, academicians, researchers, and students.

Modelling and forecasting stock return volatility and the term structure of interest rates

This book is concerned with recent developments in time series and panel data techniques for the analysis of macroeconomic and financial data. It provides a rigorous, nevertheless user-friendly, account of the time series techniques dealing with univariate and multivariate time series models, as well as panel data models. It is distinct from other time series texts in the sense that it also covers panel data models and attempts at a more coherent integration of time series, multivariate analysis, and panel data models. It builds on the author's extensive research in the areas of time series and panel data analysis and covers a wide variety of topics in one volume. Different parts of the book can be used as teaching material for a variety of courses in econometrics. It can also be used as reference manual. It begins with an overview of basic econometric and statistical techniques, and provides an account of stochastic processes, univariate and multivariate time series, tests for unit roots, cointegration, impulse response analysis, autoregressive conditional heteroskedasticity models, simultaneous equation models, vector autoregressions, causality, forecasting, multivariate volatility models, panel data models, aggregation and global vector autoregressive models (GVAR). The techniques are illustrated using Microfit 5 (Pesaran and Pesaran, 2009, OUP) with applications to real output, inflation, interest rates, exchange rates, and stock prices.

The Analytics of Risk Model Validation

Commodity markets present several challenges for quantitative modeling. These include high volatilities, small sample data sets, and physical, operational complexity. In addition, the set of traded products in commodity markets is more limited than in financial or equity markets, making value extraction through trading more difficult. These facts make it very easy for modeling efforts to run into serious problems, as many models are very sensitive to noise and hence can easily fail in practice. Modeling and Valuation of Energy Structures is a comprehensive guide to quantitative and statistical approaches that have been successfully employed in support of trading operations, reflecting the author's 17 years of experience as a front-office 'quant'. The major theme of the book is that simpler is usually better, a message that is drawn out through the reality of incomplete markets, small samples, and informational constraints. The necessary mathematical tools for understanding these issues are thoroughly developed, with many techniques (analytical, econometric, and numerical) collected in a single volume for the first time. A particular emphasis is placed on the central role that the underlying market resolution plays in valuation. Examples are provided to illustrate that robust, approximate valuations are to be preferred to overly ambitious attempts at detailed qualitative modeling.

Handbook of Financial Time Series

Financial, Macro and Micro Econometrics Using R, Volume 42, provides state-of-the-art information on important topics in econometrics, including multivariate GARCH, stochastic frontiers, fractional responses, specification testing and model selection, exogeneity testing, causal analysis and forecasting, GMM models, asset bubbles and crises, corporate investments, classification, forecasting, nonstandard problems, cointegration, financial market jumps and co-jumps, among other topics.
Presents chapters authored by distinguished, honored researchers who have received awards from the Journal of Econometrics or the Econometric Society Includes descriptions and links to resources and free open source R Gives readers what they need to jumpstart their understanding on the state-of-the-art

Handbook of Research on Emerging Theories, Models, and Applications of Financial Econometrics

From the author of the bestselling "Analysis of Time Series," Time-Series Forecasting offers a comprehensive, up-to-date review of forecasting methods. It provides a summary of time-series modelling procedures, followed by a brief catalogue of many different time-series forecasting methods, ranging from ad-hoc methods through ARIMA and state-space modelling to multivariate methods and including recent arrivals, such as GARCH models, neural networks, and cointegrated models. The author compares the more important methods in terms of their theoretical inter-relationships and their practical merits. He also considers two other general forecasting topics that have been somewhat neglected in the literature: the computation of prediction intervals and the effect of model uncertainty on forecast accuracy. Although the search for a "best" method continues, it is now well established that no single method will outperform all other methods in all situations—the context is crucial. Time-Series Forecasting provides an outstanding reference source for the more generally applicable methods particularly useful to researchers and practitioners in forecasting in the areas of economics, government, industry, and commerce.

This Handbook provides up-to-date coverage of both new and well-established fields in the sphere of economic forecasting. The chapters are written by world experts in their respective fields, and provide authoritative yet accessible accounts of the key concepts, subject matter, and techniques in a number of diverse but related areas. It covers the ways in which the availability of ever more plentiful data and computational power have been used in forecasting, in terms of the frequency of observations, the number of variables, and the use of multiple data vintages. Greater data availability has been coupled with developments in statistical theory and economic analysis to allow more elaborate and complicated models to be entertained; the volume provides explanations and critiques of these developments. These include factor models, DSGE models, restricted vector autoregressions, and non-linear models, as well as models for handling data observed at mixed frequencies, high-frequency data, multiple data vintages, methods for forecasting when there are structural breaks, and how breaks might be forecast. Also covered are areas which are less commonly associated with economic forecasting, such as climate change, health economics, long-horizon growth forecasting, and political elections. Econometric forecasting has important contributions to make in these areas along with how their developments inform the mainstream.

Handbook of Computational Finance

A comprehensive book on shipping derivatives and risk management which covers the theoretical and practical aspects of financial risk in shipping. The book provides a thorough overview of the practice of risk management in shipping with the use of theoretical examples and real-life applications.

Handbook of Research Methods and Applications in Empirical Finance
This book gathers the proceedings of the 14th International Conference on Management Science and Engineering Management (ICMSEM 2020). Held at the Academy of Studies of Moldova from July 30 to August 2, 2020, the conference provided a platform for researchers and practitioners in the field to share their ideas and experiences. Covering a wide range of topics, including hot management issues in engineering science, the book presents novel ideas and the latest research advances in the area of management science and engineering management. It includes both theoretical and practical studies of management science applied in computing methodology, highlighting advanced management concepts, and computing technologies for decision-making problems involving large, uncertain and unstructured data. The book also describes the changes and challenges relating to decision-making procedures at the dawn of the big data era, and discusses new technologies for analysis, capture, search, sharing, storage, transfer and visualization, and in the context of privacy violations, as well as advances in the integration of optimization, statistics and data mining. Given its scope, it will appeal to a wide readership, particularly those looking for new ideas and research directions.

Modeling and Valuation of Energy Structures

Finance, Econometrics and System Dynamics presents an overview of the concepts and tools for analyzing complex systems in a wide range of fields. The text integrates complexity with deterministic equations and concepts from real world examples, and appeals to a broad audience.

Volatility and Time Series Econometrics

A pioneering reference essential in any financial library, the Encyclopedia of Alternative Investments is the most authoritative source on alternative investments for students, researchers, and practitioners in this area. Containing 545 entries, the encyclopedia focuses on hedge funds, managed futures, commodities, and venture capital. It features contributions from well-known, respected academics and professionals from around the world. More than a glossary, the book includes academic references for money managers and investors who want to understand the jargon and delve into the definitions. About the Editor Greg N. Gregoriou, Ph.D., is Professor of Finance in the School of Business and Economics at the State University of New York, Plattsburgh, USA. A prolific author, Dr. Gregoriou is hedge fund editor of the Journal of Derivatives and Hedge Funds as well as an editorial board member of the Journal of Wealth Management and the Journal of Risk Management in Financial Institutions. His research primarily focuses on hedge funds and managed futures.

Trends in Data Engineering Methods for Intelligent Systems

Shipping Derivatives and Risk Management

Machine Learning and Knowledge Discovery in Databases, Research Track

Robert Engle received the Nobel Prize for Economics in 2003 for his work in time series econometrics. This book contains 16
original research contributions by some the leading academic researchers in the fields of time series econometrics, forecasting, volatility modelling, financial econometrics and urban economics, along with historical perspectives related to field of time series econometrics more generally. Engle’s Nobel Prize citation focuses on his path-breaking work on autoregressive conditional heteroskedasticity (ARCH) and the profound effect that this work has had on the field of financial econometrics. Several of the chapters focus on conditional heteroskedasticity, and develop the ideas of Engle's Nobel Prize winning work. Engle's work has had its most profound effect on the modelling of financial variables and several of the chapters use newly developed time series methods to study the behavior of financial variables. Each of the 16 chapters may be read in isolation, but they all importantly build on and relate to the seminal work by Nobel Laureate Robert F. Engle.

Encyclopedia of Alternative Investments

This book provides the ultimate goal of economic studies to predict how the economy develops—and what will happen if we implement different policies. To be able to do that, we need to have a good understanding of what causes what in economics. Prediction and causality in economics are the main topics of this book’s chapters; they use both more traditional and more innovative techniques—including quantum ideas -- to make predictions about the world economy (international trade, exchange rates), about a country’s economy (gross domestic product, stock index, inflation rate), and about individual enterprises, banks, and micro-finance institutions: their future performance (including the risk of bankruptcy), their stock prices, and their liquidity. Several papers study how COVID-19 has influenced the world economy. This book helps practitioners and researchers to learn more about prediction and causality in economics -- and to further develop this important research direction.

ARCH Models for Financial Applications

An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.

The Oxford Handbook of Economic Forecasting

Most affine models of the term structure with stochastic volatility (SV) predict that the variance of the short rate is
simultaneously a linear combination of yields and the quadratic variation of the spot rate. However, we find empirically that the A1(3) SV model generates a time series for the variance state variable that is strongly negatively correlated with a GARCH estimate of the quadratic variation of the spot rate process. We then investigate affine models that exhibit quot;unspanned stochastic volatility (USV).quot; Of the models tested, only the A1(4) USV model is found to generate both realistic volatility estimates and a good cross-sectional fit. Our findings suggest that interest rate volatility cannot be extracted from the cross-section of bond prices. Separately, we propose an alternative to the canonical representation of affine models introduced by Dai and Singleton (2001). This representation has several advantages, including: (I) the state variables have simple physical interpretations such as level, slope and curvature, (ii) their dynamics remain affine and tractable, (iii) the model is econometrically identifiable, (iv) model-insensitive estimates of the state vector process implied from the term structure are readily available, and (v) it isolates those parameters which are not identifiable from bond prices alone if the model is specified to exhibit USV.

Complex Systems in Finance and Econometrics

Elements of Financial Risk Management

Risk model validation is an emerging and important area of research, and has arisen because of Basel I and II. These regulatory initiatives require trading institutions and lending institutions to compute their reserve capital in a highly analytic way, based on the use of internal risk models. It is part of the regulatory structure that these risk models be validated both internally and externally, and there is a great shortage of information as to best practise. Editors Christodoulakis and Satchell collect papers that are beginning to appear by regulators, consultants, and academics, to provide the first collection that focuses on the quantitative side of model validation. The book covers the three main areas of risk: Credit Risk and Market and Operational Risk. *Risk model validation is a requirement of Basel I and II *The first collection of papers in this new and developing area of research *International authors cover model validation in credit, market, and operational risk

Optimal Investment

A complete guide to the theory and practice of volatility models in financial engineering Volatility has become a hot topic in this era of instant communications, spawning a great deal of research in empirical finance and time series econometrics. Providing an overview of the most recent advances, Handbook of Volatility Models and Their Applications explores key concepts and topics in the volatility of financial time series, both univariate and multivariate, parametric and non-parametric, high-frequency and low-frequency. Featuring contributions from international experts in the field, the book features numerous examples and applications from real-world projects and cutting-edge research, showing step by step how to use various methods accurately and efficiently when assessing volatility rates. Following a comprehensive introduction into the topic, readers are provided with three distinct sections that unify the statistical and practical aspects of volatility: Autoregressive Conditional Heteroskedasticity and Stochastic Volatility presents ARCH and stochastic volatility models, with a focus on recent research topics including mean, volatility, and skewness spillovers in equity markets. Other Models and Methods presents alternative approaches, such as multiplicative error models, nonparametric and semi-parametric models, and copula-based models of (co)volatilities. Realized Volatility explores issues of the measurement of volatility by realized variances and covariances, guiding readers on how to
successfully model and forecast these measures. Handbook of Volatility Models and Their Applications is an essential reference for academics and practitioners in finance, business, and econometrics who work with volatility models in their everyday work. The book also serves as a supplement for courses on risk management and volatility at the upper-undergraduate and graduate levels.

Econometric Analysis of Financial and Economic Time Series

The Second Edition of this best-selling book expands its advanced approach to financial risk models by covering market, credit, and integrated risk. With new data that cover the recent financial crisis, it combines Excel-based empirical exercises at the end of each chapter with online exercises so readers can use their own data. Its unified GARCH modeling approach, empirically sophisticated and relevant yet easy to implement, sets this book apart from others. Four new chapters and updated end-of-chapter questions and exercises, as well as Excel-solutions manual and PowerPoint slides, support its step-by-step approach to choosing tools and solving problems. Examines market risk, credit risk, and operational risk. Provides exceptional coverage of GARCH models. Features online Excel-based empirical exercises.

Financial Risk Management

The issues of developing country debt crises, increased volatility and risk, and the determination of market liquidity are high on the agendas of policy makers, market participants and researchers in the area of financial markets. These issues are also of major importance to regulators and exchange officials. This book contains a collection of eight papers which provide new insights into all three issues, with special emphasis on futures markets, which have received relatively little attention in the analysis of these problems. Issues explored and findings reported in this book, have implications for policy makers in framing recommendations to government, for government officials in shaping the regulatory structure of futures exchanges, for traders on these exchanges, and also for researchers planning future investigations. The book is relevant for post-graduate and advanced under-graduate courses on financial markets in Economics, Finance and Banking.

Copyright code: 256e6641c0cdd526159ac79d8d3f40ef